由1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,可归纳出1+2+3+...+(n-1)+n+(n-1)+...+3+2+1=( )
6个回答
展开全部
过程就这样
1+2+3+...+(n-1)+n+(n-1)+...+3+2+1
= 2 * [1+2+3+...+(n-1)+n] - n
= 2 * [n*(n+1)/2] - n
= n^2
1+2+3+...+(n-1)+n+(n-1)+...+3+2+1
= 2 * [1+2+3+...+(n-1)+n] - n
= 2 * [n*(n+1)/2] - n
= n^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-07-15
展开全部
=n的平方。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询