一道初中数学竞赛题,求详细解答过程

如图四边形ABCD中,∠B=135°,∠C=120°,AB=2倍根号3,BC=4减2倍根号2,CD=4倍根号2,则AD边的长为图在http://zhidao.baidu.... 如图四边形ABCD中,∠B=135°,∠C=120°,AB=2倍根号3 ,BC= 4减2倍根号2,CD=4倍根号2 ,则AD边的长为图在http://zhidao.baidu.com/question/235449429.html?an=0&si=1 展开
hmxa1314
2011-07-15 · TA获得超过2077个赞
知道小有建树答主
回答量:128
采纳率:0%
帮助的人:158万
展开全部
解:过点A、D分别做AE⊥BC,DF⊥BC,连接BE、 CF
∵∠ABC=135°∴ ∠ABE=45°
∵AB=根号6, ∴AE=BE = 根号3,
∵∠BCD=120°,∠CDF=60°
∵DC=6 ,∴ CF= 3, DF=3倍根号下3
∴ EF= 根号3+5根3+3= 3+6倍根3
过点A做,AG⊥DF,垂足为G,由题可知四边形AEFG为矩形
∴AG=EF= 3+6倍根3,GF=AE=根3
∴ DG=3倍根3-根3=2倍根3
所以利用勾股定理可求AD
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式