若a,b,c满足a²+b²+c²=9,代数式(a-b)²+(b-c)²+(c-a)²的最大值是(
1个回答
展开全部
解:展开,得
(a-b)^2+(b-c)^2+(c-a)^2
=2(a^2+b^2+c^2)-(2ab+2bc+2ca)
=2(a^2+b^2+c^2)-[(a+b+c)^2-(a^2+b^2+c^2)]
=3(a^2+b^2+c^2)-(a+b+c)^2
=27-(a+b+c)^2
要使上式取得最大值,就要使(a+b+c)^2最小,但(a+b+c)^2≥0,最小为0,所以
(a-b)^2+(b-c)^2+(c-a)^2
≤27
最大值为27。
注:最大值当a+b+c=0时取得。
(a-b)^2+(b-c)^2+(c-a)^2
=2(a^2+b^2+c^2)-(2ab+2bc+2ca)
=2(a^2+b^2+c^2)-[(a+b+c)^2-(a^2+b^2+c^2)]
=3(a^2+b^2+c^2)-(a+b+c)^2
=27-(a+b+c)^2
要使上式取得最大值,就要使(a+b+c)^2最小,但(a+b+c)^2≥0,最小为0,所以
(a-b)^2+(b-c)^2+(c-a)^2
≤27
最大值为27。
注:最大值当a+b+c=0时取得。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询