已知函数f(x)和g(x)的图像关于原点对称,且f(x)=x^2+2x,解不等式g(x)>=f(x)-|x-1| 10
展开全部
解:设点(x,y)在g(x)上,由函数f(x)和g(x)的图像关于原点对称,
则(-x,-y)在f(x)上,将(-x,-y)带入f(x)得到:
-y=x^2-2x,即g(x)=-x^2+2x,所以不等式变为
-x^2+2x>=x^2+2x-|x-1|;
|x-1|>=2x^2, 两边平方4x^4-x^2+2x-1<=0;
化简得(2x-1)(2x^3+x^2+1)<=0;
解方程组2x-1>=0,2x^3+x^2+1<=0无解;
解方程组2x-1<=0,2x^3+x^2+1>=0;
x<=1/2,-1/3<=x<=0
所以解为{x|1/3<=x<=0}.
则(-x,-y)在f(x)上,将(-x,-y)带入f(x)得到:
-y=x^2-2x,即g(x)=-x^2+2x,所以不等式变为
-x^2+2x>=x^2+2x-|x-1|;
|x-1|>=2x^2, 两边平方4x^4-x^2+2x-1<=0;
化简得(2x-1)(2x^3+x^2+1)<=0;
解方程组2x-1>=0,2x^3+x^2+1<=0无解;
解方程组2x-1<=0,2x^3+x^2+1>=0;
x<=1/2,-1/3<=x<=0
所以解为{x|1/3<=x<=0}.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询