展开全部
把任意一个等腰三角形的底边或者腰延长可得到生成三角形.
如图(3),将任意一个等腰三角形△ABC的底边BC延长至D,使得CA=CD,连接AD
则可知构造的△ABD为生成三角形.由于等腰三角形△ABC是任意,故不同种类的生成三角形有无数多个.
http://hi.baidu.com/youxianai/album/item/a4512ff9c245393c242df250.html#
如图(3),将任意一个等腰三角形△ABC的底边BC延长至D,使得CA=CD,连接AD
则可知构造的△ABD为生成三角形.由于等腰三角形△ABC是任意,故不同种类的生成三角形有无数多个.
http://hi.baidu.com/youxianai/album/item/a4512ff9c245393c242df250.html#
追问
那为什么大三角形ABD为一个等腰三角形呢?
追答
默默。。。△ABD不是等腰三角形,它是生成三角形。。
话说你的定义理解错了。。
若一个三角形经过它的某一顶点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.
展开全部
分析:一个等腰直角三角形,顶角平分线就把原三角形分成两个腰生成三角形,而等腰直角三角形就有无数个。证毕。
追问
这里相同的三角形是指:角分别对应相等的。
追答
等腰直角三角形大小不等,但直角都相等,锐角都等于45度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若此三角形为72度,72度,36度组成从72度引一条线
能将此三角形分为一个36度,36度,108度的三角形和72度,72度,36度的三角形
所以原三角形为腰生成三角形
但三角相等不能证明全等,能证明相似
所以边能进行等比例的放缩
所以有无数这样的三角形
能将此三角形分为一个36度,36度,108度的三角形和72度,72度,36度的三角形
所以原三角形为腰生成三角形
但三角相等不能证明全等,能证明相似
所以边能进行等比例的放缩
所以有无数这样的三角形
追问
这位同学,请注意这里相同的三角形是指:角分别对应相等的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
画个圆,以直径为原三角形底边,就能求出来了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
动手做一做~
追问
放屁,真是废话。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询