在三角形ABC中,内角A、B、C的对边分别为a,b,c已知cosA-2cosC/cosB=2c-a/b(1)求sin
2个回答
展开全部
因为(cosA-2cosC)/cosB=(2c-a)/b
所以(cosA-2cosC)/cosB=(2sinC-sinA)/sinB
cosAsinB-2sinBcosC=2sinCcosB-sinAcosB
cosAsinB+sinAcosB=2(sinBcosC+sinCcosB)
sinC=2sinA
所以sinC/sinA=2
因为sinC/sinA=2
所以c/a=2 又因为cosB=1/4,b=2
所以1/4=(a2+c2-b2)/2ac
1/4=(a2+4a2-4)/4a2
化简得a2=1
a=1 所以c=2
由cosB=1/4可知sinB=根号15/4
Sabc=1/2acsinB=1/2*1*2*根号15/4=根号15/4
PS:a2是指a的平方
所以(cosA-2cosC)/cosB=(2sinC-sinA)/sinB
cosAsinB-2sinBcosC=2sinCcosB-sinAcosB
cosAsinB+sinAcosB=2(sinBcosC+sinCcosB)
sinC=2sinA
所以sinC/sinA=2
因为sinC/sinA=2
所以c/a=2 又因为cosB=1/4,b=2
所以1/4=(a2+c2-b2)/2ac
1/4=(a2+4a2-4)/4a2
化简得a2=1
a=1 所以c=2
由cosB=1/4可知sinB=根号15/4
Sabc=1/2acsinB=1/2*1*2*根号15/4=根号15/4
PS:a2是指a的平方
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询