2个回答
展开全部
首先明确在太空中所受的万有引力 相当于人在地球上所受的重力一般,是一个保守力(做功只与初末位置有关)
然后我们假设在太空中有这样的两个星体AB,质量分别为MA ,MB,相距r1
当B星体向它们的连心线AB(其实就是万有引力的方向上)向外移动一段距离△r时,
其距离改变为r2 , r1+△r→r2,考虑△r很微小,可近似为r1=r2
同时在改变的过程中由于△r很微小,∴它们的万有引力是不变的
所以:万有引力在由r1+△r→r2所做的功就是W1=-Gm1m2/r1²×△r=-(Gm1m2/r1r2)×(r2-r1)
=-(Gm1m2/r1-Gm1m2/r2)
同理考虑无穷个这样的△r可得W2= -(Gm1m2/r2-Gm1m2/r3)
W3=-(Gm1m2/r3-Gm1m2/r4)
W4=-(Gm1m2/r4-Gm1m2/r5)
…………………………
WN=-(Gm1m2/r n-1 -Gm1m2/rn)
然后累项相加得W1+W2+W3+W4……+WN=-(Gm1m2/r1-Gm1m2/rn)
因为N趋近于无穷大,所以Gm1m2/rn就为零了∴从原处到无穷远的万有引力做功为-Gm1m2/r1,又因为 W万=EP1-EPN=
-Gm1m2/r1, EPn=0 所以EP1=-Gm1m2/r1 所以得星体A在原来的万有引力势能为EP1=-Gm1m2/r1 ∴对于任意星体都满足E=-GMm/r
然后我们假设在太空中有这样的两个星体AB,质量分别为MA ,MB,相距r1
当B星体向它们的连心线AB(其实就是万有引力的方向上)向外移动一段距离△r时,
其距离改变为r2 , r1+△r→r2,考虑△r很微小,可近似为r1=r2
同时在改变的过程中由于△r很微小,∴它们的万有引力是不变的
所以:万有引力在由r1+△r→r2所做的功就是W1=-Gm1m2/r1²×△r=-(Gm1m2/r1r2)×(r2-r1)
=-(Gm1m2/r1-Gm1m2/r2)
同理考虑无穷个这样的△r可得W2= -(Gm1m2/r2-Gm1m2/r3)
W3=-(Gm1m2/r3-Gm1m2/r4)
W4=-(Gm1m2/r4-Gm1m2/r5)
…………………………
WN=-(Gm1m2/r n-1 -Gm1m2/rn)
然后累项相加得W1+W2+W3+W4……+WN=-(Gm1m2/r1-Gm1m2/rn)
因为N趋近于无穷大,所以Gm1m2/rn就为零了∴从原处到无穷远的万有引力做功为-Gm1m2/r1,又因为 W万=EP1-EPN=
-Gm1m2/r1, EPn=0 所以EP1=-Gm1m2/r1 所以得星体A在原来的万有引力势能为EP1=-Gm1m2/r1 ∴对于任意星体都满足E=-GMm/r
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询