3个回答
展开全部
证明:
(证法一)
因为a,b,c均为正数,由平均值不等式得 {a2+b2+c2≥3(abc)231a+1b+1c≥3(abc)-13①
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式成立
当且仅当a=b=c时,①式和②式等号成立.当且仅当 3(abc)23=9(abc)-23时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
(证法二)
因为a,b,c均为正数,由基本不等式得 {a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.
当且仅当a=b=c时,①式和②式等号睁樱成立空慎,当且仅当a=b=c,(悉亏丛ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
(证法一)
因为a,b,c均为正数,由平均值不等式得 {a2+b2+c2≥3(abc)231a+1b+1c≥3(abc)-13①
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式成立
当且仅当a=b=c时,①式和②式等号成立.当且仅当 3(abc)23=9(abc)-23时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
(证法二)
因为a,b,c均为正数,由基本不等式得 {a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.
当且仅当a=b=c时,①式和②式等号睁樱成立空慎,当且仅当a=b=c,(悉亏丛ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
展开全部
因为a,b,c均为正数,由基本不等式得 {a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①滑慎
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等信袜敬式成立.
当好银且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
所以a2+b2+c2≥ab+bc+ac①滑慎
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等信袜敬式成立.
当好银且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-02-11
展开全部
因为a,b,c均为正数,由平均值不等式得 {a2+b2+c2≥3(abc)231a+1b+1c≥3(abc)-13①
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式猛友成立
当且仅当a=b=c时,①式和②式等号成乱磨立.当且仅当 3(abc)23=9(abc)-23时哗知斗,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式猛友成立
当且仅当a=b=c时,①式和②式等号成乱磨立.当且仅当 3(abc)23=9(abc)-23时哗知斗,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询