已知a、b、c均为正数,证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2>=6SPR3,并确定a、b、c为何值时,等号成立。

天下会无名
2010-06-27 · TA获得超过4782个赞
知道小有建树答主
回答量:603
采纳率:0%
帮助的人:1085万
展开全部
a^2+b^2+c^2+(1/a+1/b+1/c)^2
=a^2+b^2+c^2+1/a^2+1/b^2+1/c^2+2/ab+2/bc+2/ca
>=a^2+b^2+c^2+3(1/ab+1/bc+1/ca)=(a^2+3/ab)+(b^2+3/bc)+(c^2+3/ca)
>=2√(3a/b)+2√(3b/c)+2√(3c/a)>=6√3

a=b=c=四次根号3取等
砍了十年柴
2010-06-27 · TA获得超过3348个赞
知道小有建树答主
回答量:670
采纳率:0%
帮助的人:649万
展开全部
SPR是根号的意思吧.
用幂平均不等式:((a^2+b^2+c^2)/3)^(1/2)≥((1/a+1/b+1/c)/3)^(-1);
整理:a^2+b^2+c^2≥3*((1/a+1/b+1/c)/3)^(-2)=27*(1/a+1/b+1/c)^(-2)
令(1/a+1/b+1/c)^2=t;字数限制.打不下去了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式