已知x∈[-π6 ,π2 ],求y=(sinx+1)(cosx+1)的最值
1个回答
展开全部
解:y=(sinx+1)(cosx+1)
=sinx+cosx+sinxcosx+1
=√2*sin(x+π/4)+1/2 *sin2x+1
=√2*sin(x+π/4) - 1/2 *cos(2x+π/2) +1
=√2*sin(x+π/4) - 1/2 *[1-2sin²(x+π/4)] +1
=sin²(x+π/4)+√2*sin(x+π/4)+1/2
=[sin(x+π/4)+√2/2]²
因为x∈[-π/6 ,π/2 ],所以:
x+π/4∈[π/12,3π/4]
则当x+π/4=π/2即x=π/4时,函数y有最大值3/2 +√2
当x+π/4=π/12即x=-π/6 时,函数y有最小值1/2 +√3/4
=sinx+cosx+sinxcosx+1
=√2*sin(x+π/4)+1/2 *sin2x+1
=√2*sin(x+π/4) - 1/2 *cos(2x+π/2) +1
=√2*sin(x+π/4) - 1/2 *[1-2sin²(x+π/4)] +1
=sin²(x+π/4)+√2*sin(x+π/4)+1/2
=[sin(x+π/4)+√2/2]²
因为x∈[-π/6 ,π/2 ],所以:
x+π/4∈[π/12,3π/4]
则当x+π/4=π/2即x=π/4时,函数y有最大值3/2 +√2
当x+π/4=π/12即x=-π/6 时,函数y有最小值1/2 +√3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询