已知x∈[-π6 ,π2 ],求y=(sinx+1)(cosx+1)的最值

数学新绿洲
2011-07-21 · 初中高中数学解题研习
数学新绿洲
采纳数:13056 获赞数:76575

向TA提问 私信TA
展开全部
解:y=(sinx+1)(cosx+1)
=sinx+cosx+sinxcosx+1
=√2*sin(x+π/4)+1/2 *sin2x+1
=√2*sin(x+π/4) - 1/2 *cos(2x+π/2) +1
=√2*sin(x+π/4) - 1/2 *[1-2sin²(x+π/4)] +1
=sin²(x+π/4)+√2*sin(x+π/4)+1/2
=[sin(x+π/4)+√2/2]²
因为x∈[-π/6 ,π/2 ],所以:
x+π/4∈[π/12,3π/4]
则当x+π/4=π/2即x=π/4时,函数y有最大值3/2 +√2
当x+π/4=π/12即x=-π/6 时,函数y有最小值1/2 +√3/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式