如图,P为等边三角形ABC内的一点,角BPC=150度,(1)求证:PA的平方=PB的平方+PC的平方
2个回答
展开全部
证明:
在△ABC外侧(BC的下方)找一点D,使∠DBC=∠ABP且BD=BP 连接BD、BP、CD
∵∠DBC=∠ABP
∴∠ABC=∠PBD=60°
∵BD=BP
∴△BDP是等边三角形
∴∠BPD=60°
∵∠BPC=150°
∴∠CPD=∠BPC-∠BPD=90°
∴PD²+PC²=CD²
△ABP≌△CBD (AB=AC ∠ABP=∠CBD BD=BD)
∴PA=CD PB=PD(△PBD是等边三角形)
代入PD²+PC²=CD² 得
PA²=PB²+PC²
在△ABC外侧(BC的下方)找一点D,使∠DBC=∠ABP且BD=BP 连接BD、BP、CD
∵∠DBC=∠ABP
∴∠ABC=∠PBD=60°
∵BD=BP
∴△BDP是等边三角形
∴∠BPD=60°
∵∠BPC=150°
∴∠CPD=∠BPC-∠BPD=90°
∴PD²+PC²=CD²
△ABP≌△CBD (AB=AC ∠ABP=∠CBD BD=BD)
∴PA=CD PB=PD(△PBD是等边三角形)
代入PD²+PC²=CD² 得
PA²=PB²+PC²
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询