展开全部
设长方形径向为长X,切向的宽为Y,长方形和半径交于AB两点,扇形中心为O
扇形角平分线交长方形于C1、C2两点,交扇形于D
OC1=√(X^2-X^2/4)=√3X/2
OC2=Y+√(X^2-X^2/4)=Y+√3X/2
R^2-(X/2)^2=OC2^2
S=XY
=X*(√(R^2-X^2/4) -√3X/2)
S'=√(R^2-X^2/4)-X^2/√(4R^2-X^2)-√3X
S'=0
√(R^2-X^2/4)=X^2/(√4R^2-X^2)+√3X
R^2-X^2/4=X^2/2+√3X(√(R^2-X^2/4))
R^2-3X^2/4=√3X(√R^2-X^2/4)
R^4-3R^2X^2/2-3X^2R^2=-3X^4/4-9X^4/16
(R^2-9X^2/4)^2=60X^4/16
R^2=(9+√60)X^2/4 或 R^2=(9-√60)X^2/4
X1=2R/√(9+√60) X2=2R/√(9-√60)
宽R/√(9+√60) 长R/√(9-√60)
扇形角平分线交长方形于C1、C2两点,交扇形于D
OC1=√(X^2-X^2/4)=√3X/2
OC2=Y+√(X^2-X^2/4)=Y+√3X/2
R^2-(X/2)^2=OC2^2
S=XY
=X*(√(R^2-X^2/4) -√3X/2)
S'=√(R^2-X^2/4)-X^2/√(4R^2-X^2)-√3X
S'=0
√(R^2-X^2/4)=X^2/(√4R^2-X^2)+√3X
R^2-X^2/4=X^2/2+√3X(√(R^2-X^2/4))
R^2-3X^2/4=√3X(√R^2-X^2/4)
R^4-3R^2X^2/2-3X^2R^2=-3X^4/4-9X^4/16
(R^2-9X^2/4)^2=60X^4/16
R^2=(9+√60)X^2/4 或 R^2=(9-√60)X^2/4
X1=2R/√(9+√60) X2=2R/√(9-√60)
宽R/√(9+√60) 长R/√(9-√60)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询