如图,在四边形ABCD中,AD平行BC,∠ABC=∠DCB,点E、F分别在AB、DC上,且BE=2EA,CF=2FD,试说明∠BEC=∠CFB
展开全部
分析:要证明两个角相等,根据已知条件显然可以根据全等三角形的性质进行证明.拿余首先根据等腰梯形的性质得到两个底角相等,再根据已知条件得到线段相等,即可证明△EBC≌知敏汪△FCB.
解答:证明:在梯搭仔形ABCD中,
∵AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∵BE=2EA,CF=2FD,
∴BE= 2/3AB,CF= 2/3DC,
∴BE=CF,
在△EBC和△FCB中,
{BE=CF
{∠EBC=∠FCB
{BC=CB
∴△EBC≌△FCB,
∴∠BEC=∠CFB.
不懂,请追问,祝愉快O(∩_∩)O~
解答:证明:在梯搭仔形ABCD中,
∵AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∵BE=2EA,CF=2FD,
∴BE= 2/3AB,CF= 2/3DC,
∴BE=CF,
在△EBC和△FCB中,
{BE=CF
{∠EBC=∠FCB
{BC=CB
∴△EBC≌△FCB,
∴∠BEC=∠CFB.
不懂,请追问,祝愉快O(∩_∩)O~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询