在数列{an}中,a1=1,a(n+1)=2an+2^n
(1)设bn=an/2^n-1,证明:数列{bn}是等差数列(2)求数列{an}的前n项和Sn...
(1)设bn=an/2^n-1,证明:数列{bn}是等差数列
(2)求数列{an}的前n项和Sn 展开
(2)求数列{an}的前n项和Sn 展开
1个回答
展开全部
b<n-1> = a<n-1>/2^(n-2)bn - b<n-1> = an/2^(n-1) - a<n-1>/2^(n-2)= (an - 2a<n-1> )/2^(n-1)把 已知条件 a<n+1> = 2an+2^n 即 an = 2a<n-1> + 2^(n-1) 代入上式bn - b<n-1> = 2^(n-1)/2^(n-1)= 1因此 bn 是等差数列b1 = a1/2^(1-1) = 1/1 = 1bn = n
2、
a(n+1)=2an+2^n
同除以2^n
a(n+1)/2^n=2an/2^n+1
a(n+1)/2^n-an/2^(n-1)=1
所以数列{an/2^(n-1)}为以1为公差的等差数列
a1/2^0=1
an/2^(n-1)=1+(n-1)*1=n
所以an = n2^(n-1)
Sn=1*2^0+2*2^1+3*2^2+....+ n2^(n-1)
2Sn= 1*2^1+2*2^2+....+(n-1)2^(n-1)+n2^n
用2式-1式
Sn=-1-2^1-2^2-....2^(n-1)+n2^n
=-1-(2+2^2+2^3+...+2^(n-1))+n2^n
=(n-1)2^n+1
网上找的,不知对不对
2、
a(n+1)=2an+2^n
同除以2^n
a(n+1)/2^n=2an/2^n+1
a(n+1)/2^n-an/2^(n-1)=1
所以数列{an/2^(n-1)}为以1为公差的等差数列
a1/2^0=1
an/2^(n-1)=1+(n-1)*1=n
所以an = n2^(n-1)
Sn=1*2^0+2*2^1+3*2^2+....+ n2^(n-1)
2Sn= 1*2^1+2*2^2+....+(n-1)2^(n-1)+n2^n
用2式-1式
Sn=-1-2^1-2^2-....2^(n-1)+n2^n
=-1-(2+2^2+2^3+...+2^(n-1))+n2^n
=(n-1)2^n+1
网上找的,不知对不对
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询