已知sinx+siny=1/3求siny-(cosx)^2的最小值和最大值
1个回答
展开全部
解:因为sinx+siny=1/3即siny=1/3 -sinx
且-1≤siny≤1
则-1≤1/3 -sinx≤1
即-1≤ sinx -1/3≤1
-2/3≤sinx≤4/3
又-1≤sinx≤1
所以-2/3≤sinx≤1
因为sin²x+cos²x=1,siny=1/3 -sinx
所以siny-(cosx)²
=1/3-sinx-(1-sin²x)
=sin²x-sinx-2/3
=(sinx-1/2)²- 11/12
因为-2/3≤sinx≤1,所以:
当sinx=1/2时,siny-(cosx)²有最小值为-11/12
当sinx=-2/3时,siny-(cosx)²有最大值为4/9
且-1≤siny≤1
则-1≤1/3 -sinx≤1
即-1≤ sinx -1/3≤1
-2/3≤sinx≤4/3
又-1≤sinx≤1
所以-2/3≤sinx≤1
因为sin²x+cos²x=1,siny=1/3 -sinx
所以siny-(cosx)²
=1/3-sinx-(1-sin²x)
=sin²x-sinx-2/3
=(sinx-1/2)²- 11/12
因为-2/3≤sinx≤1,所以:
当sinx=1/2时,siny-(cosx)²有最小值为-11/12
当sinx=-2/3时,siny-(cosx)²有最大值为4/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询