xdy/dx=x^2+y^2+y , y=xtang(x+C) 该函数是否为所给微分方程的解? 证明

兔宝宝蹦蹦
2011-07-26 · TA获得超过1272个赞
知道小有建树答主
回答量:327
采纳率:0%
帮助的人:171万
展开全部
应该是y=x·tan(x+C)吧,C为常数
只要将结果代入,看是否满足方程即可
dy/dx=y′=[x·tan(x+C)]′=x′·tan(x+C)+x·[tan(x+C)]′=tan(x+C)+x·sec²(x+C)
∴x·dy/dx=x·[tan(x+C)+x·sec²(x+C)]
=x·tan(x+C)+x²·sec²(x+C)
=y+x²·[1+tan²(x+C)]
=y+x²+x²tan²(x+C)
=y+x²+y²
∴满足方程
∴该函数是所给微分方程的解
希望我的解答对你有所帮助,别忘了及时采纳噢
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式