D是等腰直角三角形ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC、AD、AB交于E、O、F,BC=2
展开全部
延长DC,FE交于G点,
由勾股定理求得AD=2√[4-2(√2)],
所以:DO=√[4-2(√2)],
由三角形GOD和三角形ACD相似得求得:DG=2(√2)
所以:GC=2
所以:三角形GOD和三角形ACD相似得∠CGE=∠CAD,所以三角形GCE和三角形ACD全等。
所以:CD=CE
所以:DE平行AB,且DE=(√2)CD=4-2√2
所以:∠CDE=45°
而∠EDF=∠EAF=45°
所以:∠FDE=∠BCA=90°
所以:DF平行AC
所以:四边形AFDE是平行四边形
又由于AE=2-EC=2-2(√2-1)=4-2√2
所以:AE=DE
所以:四边形AFDE是棱形。
∴DC=2√2-2
由勾股定理求得AD=2√[4-2(√2)],
所以:DO=√[4-2(√2)],
由三角形GOD和三角形ACD相似得求得:DG=2(√2)
所以:GC=2
所以:三角形GOD和三角形ACD相似得∠CGE=∠CAD,所以三角形GCE和三角形ACD全等。
所以:CD=CE
所以:DE平行AB,且DE=(√2)CD=4-2√2
所以:∠CDE=45°
而∠EDF=∠EAF=45°
所以:∠FDE=∠BCA=90°
所以:DF平行AC
所以:四边形AFDE是平行四边形
又由于AE=2-EC=2-2(√2-1)=4-2√2
所以:AE=DE
所以:四边形AFDE是棱形。
∴DC=2√2-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询