
展开全部
解:由根的判别式,b^2-4ac=4k^2-12k+14=(2k-3)^2+5>=5>0,所以方程恒有两个不等实根
展开全部
b^2-4ac=(2k+1)^2-4(4k-3)
=4k^2+4k+1-16k+12
=4k^2-12k+13
=4(k-3/2)^2+4>4>0
所以方程总有2个不相等的实数根
=4k^2+4k+1-16k+12
=4k^2-12k+13
=4(k-3/2)^2+4>4>0
所以方程总有2个不相等的实数根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
X²-(2k+1)X+4k-3=0是一条抛物线,它总是有顶点的,所以不可能总有2个实数根。
X²-(2k+1)X+4k-3没有极值吗?
X²-(2k+1)X+4k-3没有极值吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:△=(2k+1)^2-4(4k-3)=4k^2-12k+13=4(k-3/2)^2+4>=4>0,所以该方程总有2个不相等的实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
公式b^2-4ac=(2K+1)^2-4*1*(4k-3)=4k^2-12k+13=(2k-3)^2+4>=4
所以它永远有两个不相等的实根
所以它永远有两个不相等的实根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有一个根的判别式 b^2-4ac
b^2-4ac=(2k+1)^2-4(4k-3)=4k^2-12k+13=(2k-3)^2+4
无论k取何值,上式大于0恒成立,故有两个不等根。
b^2-4ac=(2k+1)^2-4(4k-3)=4k^2-12k+13=(2k-3)^2+4
无论k取何值,上式大于0恒成立,故有两个不等根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询