如何解一阶微分方程
3个回答
展开全部
(1)g(y)dy=f(x)dx形式
可分离变量的微分方程,直接分离然后积分
(2)可化为dy/dx=f(y/x)的齐次方程
换元,分离变量
(3)一阶线性微分方程
dy/dx+P(x)y=Q(x)
先求其对应的一阶齐次方程,然后用常数变易法带换u(x)
得到通解y=e^-∫P(x)dx{Q(x)[e^∫P(x)dx]dx+C}
(4)伯努利方程dy/dx+P(x)y=Q(x)y^n
两边同除y^n引进z=y^(n-1)配为线形一阶非齐次方程
然后代如通解,最后代入z=y^(n-1)
(5)全微分方程P(x,y)dx+Q(x,y)dy=0
有解的充要条件为ap/ay=aQ/ax
此时通解为u(x,y)=∫(xo,x)P(x,y)dx+∫(yo,y)Q(x,y)dy=C
有的方程可通过乘积分因子得到全微分方程的形式。
http://tieba.baidu.com/f?kz=781405721
可分离变量的微分方程,直接分离然后积分
(2)可化为dy/dx=f(y/x)的齐次方程
换元,分离变量
(3)一阶线性微分方程
dy/dx+P(x)y=Q(x)
先求其对应的一阶齐次方程,然后用常数变易法带换u(x)
得到通解y=e^-∫P(x)dx{Q(x)[e^∫P(x)dx]dx+C}
(4)伯努利方程dy/dx+P(x)y=Q(x)y^n
两边同除y^n引进z=y^(n-1)配为线形一阶非齐次方程
然后代如通解,最后代入z=y^(n-1)
(5)全微分方程P(x,y)dx+Q(x,y)dy=0
有解的充要条件为ap/ay=aQ/ax
此时通解为u(x,y)=∫(xo,x)P(x,y)dx+∫(yo,y)Q(x,y)dy=C
有的方程可通过乘积分因子得到全微分方程的形式。
http://tieba.baidu.com/f?kz=781405721
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询