证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)<3/4(n为大于2的自然数)
1个回答
展开全部
利用柯西不等式:
∵[1/(n+1)+1/(n+2)+……+1/(2n)]^2
<(1^2+1^2+……+1^2)[1/(n+1)^2+1/(n+2)^2+……+1/(2n)^2]【不可能取等号】
=n[1/(n+1)^2+1/(n+2)^2+……+1/(2n)^2]【适当缩小分母部分】
<n{1/[n(n+1)]+1/[(n+1)(n+2)]+……+1/[(2n-1)(2n)]【裂项求和】
=n[1/n-1/(n+1)+1/(n+1)-1/(n+2)+……+1/(2n-1)-1/(2n)]
=n[1/n-1/(2n)]
=1/2
∴1/(n+1)+1/(n+2)+1/(n+3)+....+1/(n+n)<√2/2<3/4
∵[1/(n+1)+1/(n+2)+……+1/(2n)]^2
<(1^2+1^2+……+1^2)[1/(n+1)^2+1/(n+2)^2+……+1/(2n)^2]【不可能取等号】
=n[1/(n+1)^2+1/(n+2)^2+……+1/(2n)^2]【适当缩小分母部分】
<n{1/[n(n+1)]+1/[(n+1)(n+2)]+……+1/[(2n-1)(2n)]【裂项求和】
=n[1/n-1/(n+1)+1/(n+1)-1/(n+2)+……+1/(2n-1)-1/(2n)]
=n[1/n-1/(2n)]
=1/2
∴1/(n+1)+1/(n+2)+1/(n+3)+....+1/(n+n)<√2/2<3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询