3个回答
展开全部
在三角形ABC中
因为(2a-c)cosB=bcosC
根据正弦定理
所以(2sinA-sinC)cosB=sinBcosC
所以2sinAcosB-sinCcosB=sinBcosC
所以2sinAcosB=sinCcosB+sinBcosC
所以2sinAcosB=sin(B+C)
因为在锐角三角形ABC中
所以2sinAcosB=sinA
因为sinA不等于0
所以cosB=1/2
所以角B=60°
因为(2a-c)cosB=bcosC
根据正弦定理
所以(2sinA-sinC)cosB=sinBcosC
所以2sinAcosB-sinCcosB=sinBcosC
所以2sinAcosB=sinCcosB+sinBcosC
所以2sinAcosB=sin(B+C)
因为在锐角三角形ABC中
所以2sinAcosB=sinA
因为sinA不等于0
所以cosB=1/2
所以角B=60°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
去百度查正弦定理,这到题就出来了,B=60°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询