若f(x)=(m-2)x^2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,求m的取值范围
2个回答
2011-08-01 · 知道合伙人教育行家
关注
展开全部
若 m-2>0, (1)
则 f(-1)=m-2-m+2m+1>0 (2)
f(0)=2m+1<0 (3)
f(1)=m-2+m+2m+1<0 (4)
f(2)=4(m-2)+2m+2m+1>0 (5)
取(1)(2)(3)(4)(5)的交,解得 m为空集。
若 m-2<0, (6)
则f(-1)=m-2-m+2m+1<0 (7)
f(0)=2m+1>0 (8)
f(1)=m-2+m+2m+1>0 (9)
f(2)=4(m-2)+2m+2m+1<0 (10)
取(6)(7)(8)(9)(10)的交,解得 1/4<m<1/2
综上,m的取值范围是:(1/4,1/2)
则 f(-1)=m-2-m+2m+1>0 (2)
f(0)=2m+1<0 (3)
f(1)=m-2+m+2m+1<0 (4)
f(2)=4(m-2)+2m+2m+1>0 (5)
取(1)(2)(3)(4)(5)的交,解得 m为空集。
若 m-2<0, (6)
则f(-1)=m-2-m+2m+1<0 (7)
f(0)=2m+1>0 (8)
f(1)=m-2+m+2m+1>0 (9)
f(2)=4(m-2)+2m+2m+1<0 (10)
取(6)(7)(8)(9)(10)的交,解得 1/4<m<1/2
综上,m的取值范围是:(1/4,1/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询