点(1,cosθ)到直线Xsinθ+Ycosθ-1=0的距离是1/4(0≤θ≤180°),那么θ=__________ 详解~~~~~ 20

黑球乖乖To
2011-08-02 · TA获得超过1789个赞
知道小有建树答主
回答量:753
采纳率:0%
帮助的人:389万
展开全部
点到直线距离公式为
(ax+by+c)/根号(x^2+y^2)=[sinθ+(cosθ)^2-1]/1=1/4
4sinθ+4(cosθ)^2-5=0
4sinθ+4-4(sinθ)^2-5=0
4(sinθ)^2-4sinθ+1=0
(2sinθ-1)^2=0
sinθ=1/2
θ=pi/6
斜率为-sinθ/cosθ=-tan(pi/6)=-根号3/3
fnxnmn
2011-08-02 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6666万
展开全部
根据点到直线的距离公式:
|1* sinθ+ cosθ* cosθ-1|/(sin²θ+cos²θ)= 1/4,
即|sinθ+ cos²θ-1|= 1/4,
| sinθ- sin²θ|= 1/4,
所以sinθ- sin²θ= 1/4或-1/4.

sinθ- sin²θ= 1/4时,
sin²θ- sinθ+1/4=0,
sinθ=1/2, 0°≤θ≤180°,
所以θ=30°或150°.

sinθ- sin²θ= -1/4时,
sin²θ- sinθ-1/4=0,
sinθ=(1±√2)/2,
(1+√2)/2>1舍去,
因为0°≤θ≤180°,所以sinθ≥0,(1-√2)/2<0舍去。

综上知θ=30°或150°.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
a2077661
2011-08-02 · TA获得超过495个赞
知道小有建树答主
回答量:366
采纳率:0%
帮助的人:104万
展开全部
由点到直线距离公式得:sinθ+(cosθ)^2-1的绝对值=1/4
整理得:-(sinθ)^2+sinθ的绝对值=1/4
-(sinθ)^2+sinθ=1/4 或-1/4
当=1/4时,(sinθ-1/2)^2=0,sinθ=1/2, θ1=30度 或θ2=150度
当=-1/4时,整理得(sinθ)^2-sinθ-1/4=0,sinθ=(1+√2)/2,或(1-√2)/2
0≤θ≤180°,0<=sinθ<=1, 所以 1+√2)/2,或(1-√2)/2 舍去.
最后θ=30度或150度
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式