点(1,cosθ)到直线Xsinθ+Ycosθ-1=0的距离是1/4(0≤θ≤180°),那么θ=__________ 详解~~~~~ 20
展开全部
根据点到直线的距离公式:
|1* sinθ+ cosθ* cosθ-1|/(sin²θ+cos²θ)= 1/4,
即|sinθ+ cos²θ-1|= 1/4,
| sinθ- sin²θ|= 1/4,
所以sinθ- sin²θ= 1/4或-1/4.
sinθ- sin²θ= 1/4时,
sin²θ- sinθ+1/4=0,
sinθ=1/2, 0°≤θ≤180°,
所以θ=30°或150°.
sinθ- sin²θ= -1/4时,
sin²θ- sinθ-1/4=0,
sinθ=(1±√2)/2,
(1+√2)/2>1舍去,
因为0°≤θ≤180°,所以sinθ≥0,(1-√2)/2<0舍去。
综上知θ=30°或150°.
|1* sinθ+ cosθ* cosθ-1|/(sin²θ+cos²θ)= 1/4,
即|sinθ+ cos²θ-1|= 1/4,
| sinθ- sin²θ|= 1/4,
所以sinθ- sin²θ= 1/4或-1/4.
sinθ- sin²θ= 1/4时,
sin²θ- sinθ+1/4=0,
sinθ=1/2, 0°≤θ≤180°,
所以θ=30°或150°.
sinθ- sin²θ= -1/4时,
sin²θ- sinθ-1/4=0,
sinθ=(1±√2)/2,
(1+√2)/2>1舍去,
因为0°≤θ≤180°,所以sinθ≥0,(1-√2)/2<0舍去。
综上知θ=30°或150°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由点到直线距离公式得:sinθ+(cosθ)^2-1的绝对值=1/4
整理得:-(sinθ)^2+sinθ的绝对值=1/4
-(sinθ)^2+sinθ=1/4 或-1/4
当=1/4时,(sinθ-1/2)^2=0,sinθ=1/2, θ1=30度 或θ2=150度
当=-1/4时,整理得(sinθ)^2-sinθ-1/4=0,sinθ=(1+√2)/2,或(1-√2)/2
0≤θ≤180°,0<=sinθ<=1, 所以 1+√2)/2,或(1-√2)/2 舍去.
最后θ=30度或150度
整理得:-(sinθ)^2+sinθ的绝对值=1/4
-(sinθ)^2+sinθ=1/4 或-1/4
当=1/4时,(sinθ-1/2)^2=0,sinθ=1/2, θ1=30度 或θ2=150度
当=-1/4时,整理得(sinθ)^2-sinθ-1/4=0,sinθ=(1+√2)/2,或(1-√2)/2
0≤θ≤180°,0<=sinθ<=1, 所以 1+√2)/2,或(1-√2)/2 舍去.
最后θ=30度或150度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询