求证tanx+1/tan[(π/4)+X/2]=1/COSX

fnxnmn
2011-08-02 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6737万
展开全部
tan[(π/4)+X/2]= (tanπ/4+tan X/2)/(1- tanπ/4*tan X/2)
=(1+ tan X/2)/(1- tan X/2)
分子分母同乘以cosx/2可得
=(cosx/2+sinx/2)/( cosx/2-sinx/2)
=[(cosx/2+sinx/2) (cosx/2-sinx/2)]/( cosx/2-sinx/2) ²
=(cos²x/2-sin²x/2) /( cosx/2-sinx/2) ²
=cosx/(1-sinx),
所以1/tan[(π/4)+X/2]= (1-sinx)/cosx,

tanx+1/tan[(π/4)+X/2]= tanx+(1-sinx)/cosx
=sinx/cosx+(1-sinx)/cosx=1/cosx,
∴等式成立。
tllau38
高粉答主

2011-08-02 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
tanx+1/tan[(π/4)+x/2]\
= tanx +1/[(tanπ/4+tanx/2)/(1-tanπ/4tanx/2)]
= tanx + 1/[(1+tanx/2)/(1-tanx/2)]
=tanx + (1-tanx/2)/(1+tanx/2)
= 2tanx/2/(1-tanx/2) + (1-tanx/2)/(1+tanx/2)
= [2tanx/2(1+tanx/2) + (1-tanx/2)^2]/ ( 1-(tanx/2)^2)
=[(tanx/2)^2+1] /( 1-(tanx/2)^2)
= (secx/2)^2 (cosx/2)^2/[(cosx/2)^2 - (sinx/2)^2]
= 1/[(cosx/2)^2 - (sinx/2)^2]
= 1/cosx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式