在梯形ABCD,AD∥BC,BD=CD ,∠BDC=90°,AD=3,BC=8,求AB的长。
展开全部
答:解:过点A作AE⊥BC于E,过点D作DF⊥BC于F
∵BD=CD,∠BDC=90
∴∠DBC=∠DCB=45
∵DF⊥BC
∴BF=CF=BC/2=8/2=4 (三线合一)
∴DF=BF=4 (直角三角形中线特性)
∵AE⊥BC,AD∥BC
∴矩形AEFD
∴EF=AD=3,AE=DF=4
∴BE=BF-EF=4-3=1
∴AB=√(AE²+BE²)=√(16+1)=√17
∵BD=CD,∠BDC=90
∴∠DBC=∠DCB=45
∵DF⊥BC
∴BF=CF=BC/2=8/2=4 (三线合一)
∴DF=BF=4 (直角三角形中线特性)
∵AE⊥BC,AD∥BC
∴矩形AEFD
∴EF=AD=3,AE=DF=4
∴BE=BF-EF=4-3=1
∴AB=√(AE²+BE²)=√(16+1)=√17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵∠BDC=90°,BD=DC ∴△BDC为等腰直角三角形
作DE⊥BC于E,则DE平分BC ∵BC=4 ∴DE=BE=EC=4
作AF⊥BC于F,则易证四边形ADEF为矩形 ∴EF=AD=3,AF=DE=4
∴BF=BC-EC-EF=8-4-3=1 ∵∠AFB=90°
∴AB=√(AF^2+BF^2)=√(1^2+4^2)=√17
作DE⊥BC于E,则DE平分BC ∵BC=4 ∴DE=BE=EC=4
作AF⊥BC于F,则易证四边形ADEF为矩形 ∴EF=AD=3,AF=DE=4
∴BF=BC-EC-EF=8-4-3=1 ∵∠AFB=90°
∴AB=√(AF^2+BF^2)=√(1^2+4^2)=√17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梯形ABCD是直角梯形,角C是45度.你画一下图,作DE垂直BC于点E,EC=5,所以DE=5.
又AB//DE,故,AB=DE=5
看明白了没?不明白再问我啊.
又AB//DE,故,AB=DE=5
看明白了没?不明白再问我啊.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询