
求y=(a+sinx)(a+cosx)(a属于一切实数)的最小值 高一数学
2个回答
展开全部
y=(a+sinx)(a+cosx)
=sinxcosx+a(sinx+cosx)+a^2
=(1/2)sin2x+√2sin(x+π/4)+a^2
=-(1/2)cos(2x+π/2)+√2sin(x+π/4)+a^2
=-(1/2){1-2[sin(x+π/4)]^2}+√2sin(x+π/4)+a^2
=sin(x+π/4)]^2+√2sin(x+π/4)+a^2-1/2
令t=sin(x+π/4) 则有-1<=t<=1
y=t^2+√2t+a^2-1/2
由-1<=t<=1知
当且仅当t=-√2/2时,y有最小值a^2-1
此时,x=2k+5π/4或2k+7π/4(k∈Z)
=sinxcosx+a(sinx+cosx)+a^2
=(1/2)sin2x+√2sin(x+π/4)+a^2
=-(1/2)cos(2x+π/2)+√2sin(x+π/4)+a^2
=-(1/2){1-2[sin(x+π/4)]^2}+√2sin(x+π/4)+a^2
=sin(x+π/4)]^2+√2sin(x+π/4)+a^2-1/2
令t=sin(x+π/4) 则有-1<=t<=1
y=t^2+√2t+a^2-1/2
由-1<=t<=1知
当且仅当t=-√2/2时,y有最小值a^2-1
此时,x=2k+5π/4或2k+7π/4(k∈Z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询