求高手做一道数学题,有关函数的。老师只要求我们做出前两问就行了,后面的问题我就省了。

据说这道题是中国天才青少年数学家刘浩男出的……以下是此题的前两问:已知:函数f(x)的导函数满足f'(x)-f'[f'(x)-x]=1,g(x)=f(x)f'(x)求:(... 据说这道题是中国天才青少年数学家刘浩男出的……以下是此题的前两问:
已知:函数f(x)的导函数满足f'(x)-f'[f'(x)-x]=1,g(x)=f(x)f'(x)
求:(1) 若g(x)为单调函数,且存在x满足g'(x)=0,求g(x)的表达式
(2) 试证明函数g(x)的图像恒为以(1/4,0)为对称中心的中心对称函数
对不起刚刚打错了,不是“中心对称函数”,是“中心对称图形”
展开
 我来答
百度网友8592888
2011-08-09
知道答主
回答量:6
采纳率:0%
帮助的人:13万
展开全部
我就是你要找的刘浩男,我今天就先帮你解决一下这道题,但是如果下次再对我进行人肉搜索的话,我就不客气了。
其实这道题不难的,学数学学的是思维,做数学题需要的是理清思维。比如说本题,要想求g(x),根据题意就可以转化成求f(x)f'(x),又因为只要知道f(x)和f'(x)中的任意一个就可以求出另外一个,可知只需求f(x)或f'(x)即可,又根据题意f'(x)-f'[f'(x)-x]=1可知求f'(x)是求解第一问的突破口。下面我从突破口讲起:
因为 f'(x)-f'[f'(x)-x]=1 ①
所以 f'[f'(x)-x]=f'(x)-1 ②
将f'(x)-x看成是f'(x)中的x(即作用对象)可得:
f'[f'(x)-x]-f'{f'[f'(x)-x]-[f'(x)-x]}=1
即: f'[f'(x)-x]-f'{f'[f'(x)-x]-f'(x)+x}=1
将②式代入上式得:f'[f'(x)-x]-f'[f'(x)-1-f'(x)+x]=1
即:f'[f'(x)-x]-f'(x-1)=1 ③
①式+③式得:f'(x)-f'(x-1)=2
因此导函数f'(x)是斜率为2的直线方程,设f'(x)=2x+a
将f'(x)=2x+a代入①式中得:
2x+a-f'(2x+a-x)=1 即:2x+a-f'(x+a)=1
即:2x+a-[2(x+a)+a]=1 解之得:a=-1/2
因此f'(x)=2a-1/2
因此f(x)=x^2-1/2x+b (b为常数)
因此g(x)=f(x)f'(x)=2x^3-(3/2)x^2+(2b+1/4)x-(1/2)b
因此g'(x)=6x^2-3x+(2b+1/4)
又根据题意g(x)为单调函数且存在x满足g'(x)=0得g'(x)的△为0
即:(-3)^2-4*6(2b+1/4)=0 解之得:b=3/48
因此g(x)=2x^3-(3/2)x^2+(9/24)x-3/96

第二问就比较简单了,还是先来分析一下,要证函数g(x)的图像恒为以(1/4,0)为对称中心的中心对称图形只需证f(1/4-x)+f(x+1/4)=0恒成立,下面我从f(1/4-x)+f(x+1/4)=0的证法讲起:
因为
f(1/4-x)=2*(1/4-x)^3-(3/2)(1/4-x)^2+(2b+1/4)(1/4-x)-(1/2)b
=-2x^3-(2b-1/8)x
f(x+1/4)=2*(x+1/4)^3-(3/2)(x+1/4)^2+(2b+1/4)(x+1/4)-(1/2)b
=2x^3+(2b-1/8)x
因此f(1/4-x)+f(x+1/4)=0
因此函数g(x)恒关于点(1/4,0)中心对称

如果你需要把第3问补出来顺便让我讲解一下的话,百度hi我就行了。

祝你在今后的数学学习中愉快!

还有别叫我是中国天才青少年数学家叫得太频繁,否则我很不好意思的。不过,还是要谢谢你这么给我面子。
yamin_djlg
2011-08-07 · TA获得超过2497个赞
知道小有建树答主
回答量:1125
采纳率:0%
帮助的人:1036万
展开全部
想了一会做不来 等待高手
追问
你会不会人肉搜索啊?把那位中国天才青少年数学家刘浩男找来多好。只是我不知道这么不礼貌他会帮忙吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沧海没几栗
2011-08-06 · TA获得超过204个赞
知道答主
回答量:149
采纳率:0%
帮助的人:61.2万
展开全部
太难了,搞不定,找个专家吧
追问
找专家?找谁?莫非你能找到中国天才青少年数学家刘浩男?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-08-05
展开全部
找数学老师呗
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-08-05
展开全部
老师要求不高
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
李嘉东岳
2011-08-05 · 贡献了超过122个回答
知道答主
回答量:122
采纳率:0%
帮助的人:32.1万
展开全部
这问题……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式