平面上有四个点A.B.C.D,其中任何三个点都不共线,求证:△ABC,△ABD,△ACD,△BCD中
平面上有四个点A.B.C.D,其中任何三个点都不共线,求证:△ABC,△ABD,△ACD,△BCD中至少有一个内角不超过45°...
平面上有四个点A.B.C.D,其中任何三个点都不共线,求证:△ABC,△ABD,△ACD,△BCD中至少有一个内角不超过45°
展开
展开全部
利用反证法。假设这些三角形的每个内角都大于45°,那么:
一、当ABCD构成凸四边形时。
∠BAD+∠ABC+∠BCD+∠ADC
=(∠BAC+∠CAD)+(∠ABD+∠CBD)+(∠ACB+∠ACD)+(∠ADB+∠BDC)
>(45°+45°)+(45°+45°)+(45°+45°)+(45°+45°)=360°。
这与四边形的内角和等于360°相矛盾。
∴这些三角形的每个内角都大于45°是不可能的,得:这些三角形中至少有一个内角不超过45°。
二、当ABCD构成凹四边形时,不失一般性地设点C内凹,即C在△ABD的内部。
∠ABD+∠ADB+∠BAD
=(∠ABC+∠CBD)+(∠ADC+∠BDC)+(∠BAC+∠CAD)
>(45°+45°)+(45°+45°)+(45°+45°)=270°。
这与三角形的内角和等于180°相矛盾。
∴这些三角形的每个内角都大于45°是不可能的,得:这些三角形中至少有一个内角不超过45°。
综上一、二所述,问题得证。
一、当ABCD构成凸四边形时。
∠BAD+∠ABC+∠BCD+∠ADC
=(∠BAC+∠CAD)+(∠ABD+∠CBD)+(∠ACB+∠ACD)+(∠ADB+∠BDC)
>(45°+45°)+(45°+45°)+(45°+45°)+(45°+45°)=360°。
这与四边形的内角和等于360°相矛盾。
∴这些三角形的每个内角都大于45°是不可能的,得:这些三角形中至少有一个内角不超过45°。
二、当ABCD构成凹四边形时,不失一般性地设点C内凹,即C在△ABD的内部。
∠ABD+∠ADB+∠BAD
=(∠ABC+∠CBD)+(∠ADC+∠BDC)+(∠BAC+∠CAD)
>(45°+45°)+(45°+45°)+(45°+45°)=270°。
这与三角形的内角和等于180°相矛盾。
∴这些三角形的每个内角都大于45°是不可能的,得:这些三角形中至少有一个内角不超过45°。
综上一、二所述,问题得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询