
若a,b,c属于正实数,且a+b+c=1,求证1/a^2+1/b^2+1/c^2≥27
1个回答
展开全部
a+b+c=1>=3(abc)^(1/3)
=>(abc)^(1/3)<=1/3
=>(abc)^(2/3)<=1/9
1/a^2+1/b^2+1/c^2>=3/(abc)^(2/3)>=3/(1/9)=27
取等a=b=c
=>(abc)^(1/3)<=1/3
=>(abc)^(2/3)<=1/9
1/a^2+1/b^2+1/c^2>=3/(abc)^(2/3)>=3/(1/9)=27
取等a=b=c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询