已知函数f(x)=2cosxsin(x+π/3)-√3(sinx)^2+sinxcosx 5
(1)求函数f(x)的最小正周期;(2)若x∈[-π/2,π/2]时,求f(x)的单调递减区间。...
(1)求函数f(x)的最小正周期;
(2)若x∈[-π/2,π/2]时,求f(x)的单调递减区间。 展开
(2)若x∈[-π/2,π/2]时,求f(x)的单调递减区间。 展开
1个回答
展开全部
(1)
2cosxsin(x+π/3)=sin(2x+π/3)+sinπ/3,(和差化积)
-√3sin²x=( -√3/2)(1-cos2x),
sinxcosx=½sin2x.
∴f(x)=sin(2x+π/3)+sinπ/3-√3/2+√3/2cos2x+½sin2x
=sin(2x+π/3)+[√3/2cos2x+½sin2x]
=sin(2x+π/3)+sin(2x+π/3) (辅助角公式)
=2sin(2x+π/3).
(2)由2x+π/3∈[π/2+2kπ,3π/2+2kπ]得 x∈[π/12+kπ,7π/12+kπ]. (k∈Z)
又x∈[-π/2,π/2].∴x∈[-π/2,-5π/12]∪[π/12,2/π] .此即为所求递减区间.
2cosxsin(x+π/3)=sin(2x+π/3)+sinπ/3,(和差化积)
-√3sin²x=( -√3/2)(1-cos2x),
sinxcosx=½sin2x.
∴f(x)=sin(2x+π/3)+sinπ/3-√3/2+√3/2cos2x+½sin2x
=sin(2x+π/3)+[√3/2cos2x+½sin2x]
=sin(2x+π/3)+sin(2x+π/3) (辅助角公式)
=2sin(2x+π/3).
(2)由2x+π/3∈[π/2+2kπ,3π/2+2kπ]得 x∈[π/12+kπ,7π/12+kπ]. (k∈Z)
又x∈[-π/2,π/2].∴x∈[-π/2,-5π/12]∪[π/12,2/π] .此即为所求递减区间.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询