一道一次函数题:P是y轴上一动点,是否存在平行于y轴的直线x=t……
如图,P是y轴上一动点,是否存在平行于y轴的直线x=t,使它与直线y=x和y=-1/2x+2分别交于点D、E(E在D上方)且△PDE为等腰直角三角形?若存在求出t的值及P...
如图,P是y轴上一动点,是否存在平行于y轴的直线x=t,使它与直线y=x和y=-1/2 x+2分别交于点D、E(E在D上方)且△PDE为等腰直角三角形?
若存在求出t的值及P的坐标;若不存在请说明理由。
图中红色的是老师提示的一种情况,也就是说肯定存在这种情况,老师说貌似有6种。
请大家帮帮我。。
可能稍微有点不标准、 展开
若存在求出t的值及P的坐标;若不存在请说明理由。
图中红色的是老师提示的一种情况,也就是说肯定存在这种情况,老师说貌似有6种。
请大家帮帮我。。
可能稍微有点不标准、 展开
展开全部
解:存在.
方法一:当x=t时,y=x=t;
当x=t时,y=-
1
2
x+2=-
1
2
t+2.
∴E点坐标为(t,-
1
2
t+2),D点坐标为(t,t).(2分)
∵E在D的上方,
∴DE=-
1
2
t+2-t=-
3
2
t+2,且t<
4
3
.(3分)
∵△PDE为等腰直角三角形,
∴PE=DE或PD=DE或PE=PD.(4分)
若t>0,PE=DE时,-
3
2
t+2=t,
∴t=
4
5
,-
1
2
t+2=
8
5
,
∴P点坐标为(0,
8
5
).(5分)
若t>0,PD=DE时,-
3
2
t+2=t,
∴t=
4
5
,
∴P点坐标为(0,
4
5
).(6分)
若t>0,PE=PD时,即DE为斜边,
∴-
3
2
t+2=2t(7分)
∴t=
4
7
,DE的中点坐标为(t,
1
4
t+1),
∴P点坐标为(0,
8
7
).(8分)
若t<0,PE=DE和PD=DE时,由已知得DE=-t,-
3
2
t+2=-t,t=4>0(不符合题意,舍去),
此时直线x=t不存在.(10分)
若t<0,PE=PD时,即DE为斜边,由已知得DE=-2t,-
3
2
t+2=-2t,(11分)
∴t=-4,
1
4
t+1=0,
∴P点坐标为(0,0).(12分)
综上所述:当t=
4
5
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
5
)或(0,
4
5
);
当t=
4
7
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
7
);
当t=-4时,△PDE为等腰直角三角形,此时P点坐标为(0,0).
方法二:设直线y=-
1
2
x+2交y轴于点A,交直线y=x于点B,过B点作BM垂直于y轴,垂足为M,交DE于点N.
∵x=t平行于y轴,
∴MN=|t|.(1分)
∵
y=xy=-12x+2
,
解得x=
4
3
,y=
4
3
,
∴B点坐标为(
4
3
,
4
3
),
∴BM=
4
3
,
当x=0时,y=-
1
2
x+2=2,
∴A点坐标为(0,2),
∴OA=2.(3分)
∵△PDE为等腰直角三角形,
∴PE=DE或PD=DE或PE=PD.(4分)
如图,若t>0,PE=DE和PD=DE时,
∴PE=t,PD=t,
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
.(5分)
∴
t
2
=
43-t
43
,
∴t=
4
5
当t=
4
5
时,y=-
1
2
x+2=
8
5
,y=x=
4
5
∴P点坐标为(0,
8
5
)或(0,
4
5
).(6分)
若t>0,PD=PE时,即DE为斜边,
∴DE=2MN=2t.
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
(7分)
∴
2MN
2
=
43-MN
43
,
∴MN=t=
4
7
,DE中点的纵坐标为
1
4
t+1=
8
7
,
∴P点坐标为(0,
8
7
)(8分)
如图,
若t<0,PE=DE或PD=DE时,
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
(9分)
DE=-4(不符合题意,舍去),此时直线x=t不存在.(10分)
若t<0,PE=PD时,即DE为斜边,
∴DE=2MN=-2t,
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
(11分)
∴
2MN
2
=
43+MN
43
,
∴MN=4,
∴t=-4,
1
4
t+1=0,
∴P点坐标为(0,0).(12分)
综上述所述:当t=
4
5
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
5
)或(0,
4
5
);
当t=
4
7
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
7
);当t=-4时,
△PDE为等腰直角三角形,此时P点坐标为(0,0).
方法一:当x=t时,y=x=t;
当x=t时,y=-
1
2
x+2=-
1
2
t+2.
∴E点坐标为(t,-
1
2
t+2),D点坐标为(t,t).(2分)
∵E在D的上方,
∴DE=-
1
2
t+2-t=-
3
2
t+2,且t<
4
3
.(3分)
∵△PDE为等腰直角三角形,
∴PE=DE或PD=DE或PE=PD.(4分)
若t>0,PE=DE时,-
3
2
t+2=t,
∴t=
4
5
,-
1
2
t+2=
8
5
,
∴P点坐标为(0,
8
5
).(5分)
若t>0,PD=DE时,-
3
2
t+2=t,
∴t=
4
5
,
∴P点坐标为(0,
4
5
).(6分)
若t>0,PE=PD时,即DE为斜边,
∴-
3
2
t+2=2t(7分)
∴t=
4
7
,DE的中点坐标为(t,
1
4
t+1),
∴P点坐标为(0,
8
7
).(8分)
若t<0,PE=DE和PD=DE时,由已知得DE=-t,-
3
2
t+2=-t,t=4>0(不符合题意,舍去),
此时直线x=t不存在.(10分)
若t<0,PE=PD时,即DE为斜边,由已知得DE=-2t,-
3
2
t+2=-2t,(11分)
∴t=-4,
1
4
t+1=0,
∴P点坐标为(0,0).(12分)
综上所述:当t=
4
5
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
5
)或(0,
4
5
);
当t=
4
7
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
7
);
当t=-4时,△PDE为等腰直角三角形,此时P点坐标为(0,0).
方法二:设直线y=-
1
2
x+2交y轴于点A,交直线y=x于点B,过B点作BM垂直于y轴,垂足为M,交DE于点N.
∵x=t平行于y轴,
∴MN=|t|.(1分)
∵
y=xy=-12x+2
,
解得x=
4
3
,y=
4
3
,
∴B点坐标为(
4
3
,
4
3
),
∴BM=
4
3
,
当x=0时,y=-
1
2
x+2=2,
∴A点坐标为(0,2),
∴OA=2.(3分)
∵△PDE为等腰直角三角形,
∴PE=DE或PD=DE或PE=PD.(4分)
如图,若t>0,PE=DE和PD=DE时,
∴PE=t,PD=t,
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
.(5分)
∴
t
2
=
43-t
43
,
∴t=
4
5
当t=
4
5
时,y=-
1
2
x+2=
8
5
,y=x=
4
5
∴P点坐标为(0,
8
5
)或(0,
4
5
).(6分)
若t>0,PD=PE时,即DE为斜边,
∴DE=2MN=2t.
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
(7分)
∴
2MN
2
=
43-MN
43
,
∴MN=t=
4
7
,DE中点的纵坐标为
1
4
t+1=
8
7
,
∴P点坐标为(0,
8
7
)(8分)
如图,
若t<0,PE=DE或PD=DE时,
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
(9分)
DE=-4(不符合题意,舍去),此时直线x=t不存在.(10分)
若t<0,PE=PD时,即DE为斜边,
∴DE=2MN=-2t,
∵DE∥OA,
∴△BDE∽△BOA,
∴
DE
OA
=
BN
BM
(11分)
∴
2MN
2
=
43+MN
43
,
∴MN=4,
∴t=-4,
1
4
t+1=0,
∴P点坐标为(0,0).(12分)
综上述所述:当t=
4
5
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
5
)或(0,
4
5
);
当t=
4
7
时,△PDE为等腰直角三角形,此时P点坐标为(0,
8
7
);当t=-4时,
△PDE为等腰直角三角形,此时P点坐标为(0,0).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询