求证:1/(1*2*3)+1/(2*3*4)+......+1/(n*(n+1)*(n+2))<1/4
2个回答
展开全部
因为1/[n(n+1)(n+2)]
=1/2*{1/[n(n+1)] - 1/[(n+1)(n+2)]}
所以1/(1*2*3)+1/(2*3*4)+......+1/(n*(n+1)*(n+2))
=1/2*{1/(1*2) - 1/(2*3) + 1/(2*3) - 1/(3*4) + …… +1/[n(n+1)] - 1/[(n+1)(n+2)]}
=1/2*{1/2 - 1/[(n+1)(n+2)]}
=1/4 - 1/[2(n+1)(n+2)]显然小于1/4
=1/2*{1/[n(n+1)] - 1/[(n+1)(n+2)]}
所以1/(1*2*3)+1/(2*3*4)+......+1/(n*(n+1)*(n+2))
=1/2*{1/(1*2) - 1/(2*3) + 1/(2*3) - 1/(3*4) + …… +1/[n(n+1)] - 1/[(n+1)(n+2)]}
=1/2*{1/2 - 1/[(n+1)(n+2)]}
=1/4 - 1/[2(n+1)(n+2)]显然小于1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询