如图,在△ABC中,已知AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,交AB于点E.求证bd=二分之一dc

apple12345676
2014-03-27 · TA获得超过162个赞
知道答主
回答量:11
采纳率:0%
帮助的人:6.6万
展开全部

在CD上取一点M,使得AD=DM,连接AM

∵AB=AC

∴∠C=∠B=(180°-120°)/2=30°(等腰三角形性质)

∵DE所在直线垂直平分AB

∴AD=BD(垂直平分线性质)

∴∠ADM=2∠B=60°(等腰三角形中顶角的邻角是底角的两倍)

∵AD=DM

∴△ADM是等边三角形(含一个60°角的等腰三角形是等边三角形)

∴∠DAM=60°,AM=DM(等边三角形性质)

∴∠CAM=120°-60°-30°=30°=∠C

∴△ACM是等腰三角形

∴AM=CM

∴BD=DM=CM

∴BC=1/3 BC

则BD=½DC

写得有点啰嗦,括号中的不用写,只是能更好理解。

与蛇共舞CB
2014-03-27 · TA获得超过198个赞
知道答主
回答量:83
采纳率:100%
帮助的人:43.2万
展开全部
方法1,证明相似△BED相似于三角形CAD,因为两个三角形有两个∠相等
相似比是1:2.
在△AED中,∠EAD=30°,所以ED=1/2AD
追问
两个三角形有两个∠相等
相似比是1:2是什么意思????
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式