设f(x)=x^3+ax^2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常数a,b属于R
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f'(x)e^(-x),求函数g(x)的极值...
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f'(x)e^(-x),求函数g(x)的极值 展开
(2)设g(x)=f'(x)e^(-x),求函数g(x)的极值 展开
3个回答
展开全部
f'(x)=3x^2+2ax+b 由f'(1)=2a,f'(2)=-b 解得a=-3/2 b=-3
f(x)=x^3-3/2x^2-3x+1
(1)切线斜率为f'(1)=2a=-3 点(1,f(1))即(1,-5/2) 切线方程为y+5/2=-3(x-1)
(2)g(x)=f'(x)e^(-x)=(3x^2-3x-3)e^(-x)
g'(x)=(6x-3)e^(-x)-(3x^2-3x-3)e^(-x)=e^(-x)(9x-3x^2)
令g'(x)=0 即9x-3x^2=0 得x=0或x=3 代入可求得极值
f(x)=x^3-3/2x^2-3x+1
(1)切线斜率为f'(1)=2a=-3 点(1,f(1))即(1,-5/2) 切线方程为y+5/2=-3(x-1)
(2)g(x)=f'(x)e^(-x)=(3x^2-3x-3)e^(-x)
g'(x)=(6x-3)e^(-x)-(3x^2-3x-3)e^(-x)=e^(-x)(9x-3x^2)
令g'(x)=0 即9x-3x^2=0 得x=0或x=3 代入可求得极值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询