如图,三角形ABC是等边三角形,D,E,F分别是AB,BC,CA上的点 (1)若AD=BE=CF

,三角形DEF是等边三角形吗?请证明(2)若三角形DEF是等边三角形,AD=BE=CF成立吗?请证明... ,三角形DEF是等边三角形吗?请证明(2)若三角形DEF是等边三角形,AD=BE=CF成立吗?请证明 展开
 我来答
cazyfrog
2014-03-12 · TA获得超过5.7万个赞
知道小有建树答主
回答量:7157
采纳率:98%
帮助的人:315万
展开全部
(1)△DEF是等边三角形.
证明:
∵△ABC是等边三角形,
∴∠A=∠B=∠C,AB=BC=CA,
又∵AD=BE=CF,
∴DB=EC=FA,
∴△ADF≌△BED≌△CFE,
∴DF=DE=EF,即△DEF是等边三角形

(2)AD=BE=CF成立.
证明:∵△DEF是等边三角形,
∴DE=EF=FD,∠FDE=∠DEF=∠EFD=60°,
∴∠1+∠2=120°,
又∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∴∠2+∠3=120°,
∴∠1=∠3,
同理∠3=∠4,
∴△ADF≌△BED≌△CFE,
∴AD=BE=CF.

【同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦】
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式