哥德巴赫猜想是否已完全证明?
19个回答
展开全部
h还没有
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2006-01-24
展开全部
我算出来了``1+1=2`2+2=4``嘿嘿
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
good job
~ thank you.~~!
~ thank you.~~!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哥德巴赫猜想和孪生素数猜想都已经完全证明见"中国预印本.数学序号:1286(中文),1200(英文)",下面短文介绍了证明的主要思路和核心方法:
善良的宋兰介绍<<一个挑战世界难题的数学模型>>一文中两作者吕春桂,吕渊的短文:
德国数学家希尔伯特以及E.朗道.英国数论学家哈代和我国数学家王元等对哥德巴赫猜想的评价都是正确的.数学家哥德尔认为有限歩骤不可能证明哥德巴赫猜想也是正确的.中国预印本.数学序号:1286论文<<一个挑战世界难题的数学模型>>正好给出了一个验证哥德尔不完备定理的具体实例,并证明了哥德巴赫猜想不是哥德尔命题.文章指出任何给定的数学模型Gn-圆都只能证明一部分连续偶数可表为二奇素数之和,而对其他偶数是不可判定的命题,见原文第10至13页,注意到第64至74页证明在ZFC公理体系中的一个全称命题,即Gn-圆上每一个偶数列向量都可表为二奇素向量之和(注意:素向量对应的整数不一定是素数,见定义),再用概括规则(或称UG规则)推导出一部分连续偶数必为二奇素数之和(这是特称命题),.验证了哥德尔不完备定理.也就是说,如果不构造可数无穷个数学模型Gn-圆,n=1,2,...使用超限归纳法是不能证明哥猜等命题的.分层构造的代数系统是解决问题的关键.
数学家普遍认为:对哥猜的进一歩研究,必须有一个全新的思想.也有数学家认为:现有数学本身的公理不足以解释哥猜,需要拓宽基础才能解释.数学序号:1286文章所用到的理论是数论和离散数学的公理,定理及推理规则.作者只是补充了两条定义:(1)分量同余关系及非分量同余(此定义是欧拉函数和同余概念的推广). (2)哥氏向量及非哥氏向量(此定义是高斯二次剩余概念的推广).由离散数学可知这种定义可称为"非逻辑公理"(见原文参考文献[2]第77页).定义给出了列向量集合Gn的分类方法,亊实上使用中国剩余定理和同余关系是对整数的第一次分类,利用文章的定义"分量同余关系"是对定理中集合Gn的元素进行第二次分类.利用定义"哥氏向量"是对集合Gn元素的第三次分类.同时引进幂集代数(或称为布尔代数)的高效可行的运算方法.将数论和离散数学两个数学分支链接起来,构成了一个更大更强的统一的公理体系(在文章中称为数学模型Gn-圆),此体系不但可以解释哥猜命题,而且还可得到比哥猜更强的结果.这些结果不但有清晰的数学表达式也可进行高效的运算.并且具有几何的直覌性和代数的可验性.
由于文章是对新思想,新方法的探索,如有表达不妥或感到不方便之处,请同行专家学者以及广大师生不吝赐教.并期待全数学界严密的审查.
善良的宋兰介绍<<一个挑战世界难题的数学模型>>一文中两作者吕春桂,吕渊的短文:
德国数学家希尔伯特以及E.朗道.英国数论学家哈代和我国数学家王元等对哥德巴赫猜想的评价都是正确的.数学家哥德尔认为有限歩骤不可能证明哥德巴赫猜想也是正确的.中国预印本.数学序号:1286论文<<一个挑战世界难题的数学模型>>正好给出了一个验证哥德尔不完备定理的具体实例,并证明了哥德巴赫猜想不是哥德尔命题.文章指出任何给定的数学模型Gn-圆都只能证明一部分连续偶数可表为二奇素数之和,而对其他偶数是不可判定的命题,见原文第10至13页,注意到第64至74页证明在ZFC公理体系中的一个全称命题,即Gn-圆上每一个偶数列向量都可表为二奇素向量之和(注意:素向量对应的整数不一定是素数,见定义),再用概括规则(或称UG规则)推导出一部分连续偶数必为二奇素数之和(这是特称命题),.验证了哥德尔不完备定理.也就是说,如果不构造可数无穷个数学模型Gn-圆,n=1,2,...使用超限归纳法是不能证明哥猜等命题的.分层构造的代数系统是解决问题的关键.
数学家普遍认为:对哥猜的进一歩研究,必须有一个全新的思想.也有数学家认为:现有数学本身的公理不足以解释哥猜,需要拓宽基础才能解释.数学序号:1286文章所用到的理论是数论和离散数学的公理,定理及推理规则.作者只是补充了两条定义:(1)分量同余关系及非分量同余(此定义是欧拉函数和同余概念的推广). (2)哥氏向量及非哥氏向量(此定义是高斯二次剩余概念的推广).由离散数学可知这种定义可称为"非逻辑公理"(见原文参考文献[2]第77页).定义给出了列向量集合Gn的分类方法,亊实上使用中国剩余定理和同余关系是对整数的第一次分类,利用文章的定义"分量同余关系"是对定理中集合Gn的元素进行第二次分类.利用定义"哥氏向量"是对集合Gn元素的第三次分类.同时引进幂集代数(或称为布尔代数)的高效可行的运算方法.将数论和离散数学两个数学分支链接起来,构成了一个更大更强的统一的公理体系(在文章中称为数学模型Gn-圆),此体系不但可以解释哥猜命题,而且还可得到比哥猜更强的结果.这些结果不但有清晰的数学表达式也可进行高效的运算.并且具有几何的直覌性和代数的可验性.
由于文章是对新思想,新方法的探索,如有表达不妥或感到不方便之处,请同行专家学者以及广大师生不吝赐教.并期待全数学界严密的审查.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询