初一数学题【有追加
如图,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN与点C;两动点E、D同时从A点出发,其中E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度在...
如图,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA 交AN与点C;两动点E、D同时从A点出发,其中E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度在直线AM上运动;已知AC=6cm,动点D、E的运动时间t
1、若S△ABD:S△BEC=2:3,试求动点D、E的运动时间t的值
2、试问当动点D、E在运动过程中,是否存在某个时间t,使得△ADB与△BEC全等?若存在,请求出时间t的值;若不存在,请说明理由 展开
1、若S△ABD:S△BEC=2:3,试求动点D、E的运动时间t的值
2、试问当动点D、E在运动过程中,是否存在某个时间t,使得△ADB与△BEC全等?若存在,请求出时间t的值;若不存在,请说明理由 展开
2个回答
展开全部
(1)∵AM⊥AN,AB平分∠MAN
∴∠BAM=∠BAN=1/2∠MAN=45°
过B作BP垂直AM,BQ垂直AN
∠BPM=∠BQM=90°
在△ABP和△ABQ中
∠BPM=∠BQM
∠BAM=∠BAN
AB=AB
∴△ABP≌△ABQ(AAS)
∴BP=BQ
∵S△ABD:S△BEC=2:3
即AD×BP:CE×BQ=2:3
∵BP=BQ
∴AD:CE=2:3
∵AE=2t,AC=6cm
∴CE=AC-AE=6-2t
∵AD:CE=2:3
∴t:6-2t=2:3
∴3t=2(6-2t)
∴t=12/7
(2)△ABD≌△CBE
∵△ABD≌△CBE
∴AD=CE
∵AD=t,AE=2t
∴t=6-2t
∴t=2
-------------------------------望采纳!!--------------------------
∴∠BAM=∠BAN=1/2∠MAN=45°
过B作BP垂直AM,BQ垂直AN
∠BPM=∠BQM=90°
在△ABP和△ABQ中
∠BPM=∠BQM
∠BAM=∠BAN
AB=AB
∴△ABP≌△ABQ(AAS)
∴BP=BQ
∵S△ABD:S△BEC=2:3
即AD×BP:CE×BQ=2:3
∵BP=BQ
∴AD:CE=2:3
∵AE=2t,AC=6cm
∴CE=AC-AE=6-2t
∵AD:CE=2:3
∴t:6-2t=2:3
∴3t=2(6-2t)
∴t=12/7
(2)△ABD≌△CBE
∵△ABD≌△CBE
∴AD=CE
∵AD=t,AE=2t
∴t=6-2t
∴t=2
-------------------------------望采纳!!--------------------------
追问
两题都有两个答案、、、
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询