七年级数学上册追及问题的所有公式,最好再出一道题,求求各位高手们了。。
2个回答
展开全部
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。问往返共需多少时间?
讲评:这一问题实际上分为两个过程:①从排尾到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;②从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇。
在追及过程中,设追及的时间为x秒,队伍行进(即排头)速度为90米/分=1.5米/秒,则排头行驶的路程为1.5x米;追及者的速度为3米/秒,则追及者行驶的路程为3x米。由追及问题中的相等关系“追赶者的路程-被追者的路程=原来相隔的路程”,有:
3x-1.5x=450 ∴x=300
在相遇过程中,设相遇的时间为y秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有: 3y+1.5y=450 ∴y=100
故往返共需的时间为 x+y=300+100=400(秒)
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。问往返共需多少时间?
讲评:这一问题实际上分为两个过程:①从排尾到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;②从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇。
在追及过程中,设追及的时间为x秒,队伍行进(即排头)速度为90米/分=1.5米/秒,则排头行驶的路程为1.5x米;追及者的速度为3米/秒,则追及者行驶的路程为3x米。由追及问题中的相等关系“追赶者的路程-被追者的路程=原来相隔的路程”,有:
3x-1.5x=450 ∴x=300
在相遇过程中,设相遇的时间为y秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有: 3y+1.5y=450 ∴y=100
故往返共需的时间为 x+y=300+100=400(秒)
追问
...我有点看不太懂,能不能出一点甲乙追及的,就是甲先走乙追这种的,摆脱了..
追答
追及路程=甲走的路程-乙走的路程
=甲的速度×追及时间-乙的速度×追及时间
=速度差×追及时间
核心就是“速度差”的问题。
2甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。那么汽车是在距乙地多少千米处追上拖拉机的?
A.60千米
B.50千米
C.40千米
D.30千米
【答案】C。解析:汽车和拖拉机的速度比为100:(100-15-10)=4:3,设追上时经过了t小时,那么汽车速度为4x,拖拉机速度则为3x,则3xt+15=4xt,即(4x-3x)t=15得出xt=15,既汽车是经过4xt=60千米追上拖拉机,这时汽车距乙地100-60=40千米。这里速度差就被隐藏了。
展开全部
追击公式:
①追击时间=路程差÷速度差
②路程差=速度差×追击时间
③速度差=路程差÷追击时间
若要简单点的
如:甲与乙从A地到B地,甲的速度为60米每分,乙的速度为40米每分,乙先走10分钟,结果两人同时到B地,求AB距离
法一:首先路程差是:10×40=400(因为乙先走)
速度差为:60-40=20
则用公式一:400÷20=20(分)
60×20或40×(20+10)求得路程1200米
法二:方程
解:设甲行x分钟到B地
60x=40(x+10)
x=20
也可求得路程1200米
求采纳
①追击时间=路程差÷速度差
②路程差=速度差×追击时间
③速度差=路程差÷追击时间
若要简单点的
如:甲与乙从A地到B地,甲的速度为60米每分,乙的速度为40米每分,乙先走10分钟,结果两人同时到B地,求AB距离
法一:首先路程差是:10×40=400(因为乙先走)
速度差为:60-40=20
则用公式一:400÷20=20(分)
60×20或40×(20+10)求得路程1200米
法二:方程
解:设甲行x分钟到B地
60x=40(x+10)
x=20
也可求得路程1200米
求采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |