如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒
如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2...
如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
展开
1个回答
展开全部
(1)设正方形的边长为xcm.
则(10-2x)(8-2x)=48,
即x2-9x+8=0,
解得x1=8(不合题意,舍去),x2=1.
答:剪去的正方形的边长为1cm.
(2)有侧面积最大的情况.
设正方形的边长为xcm,盒子的侧面积为ycm2,
则y与x的函数关系式为:
y=2(10-2x)x+2(8-2x)x,
即y=-8x2+36x.(0<x<4)
改写为y=-8(x-
)2+
,
∴当x=2.25时,y最大=40.5.
即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.
则(10-2x)(8-2x)=48,
即x2-9x+8=0,
解得x1=8(不合题意,舍去),x2=1.
答:剪去的正方形的边长为1cm.
(2)有侧面积最大的情况.
设正方形的边长为xcm,盒子的侧面积为ycm2,
则y与x的函数关系式为:
y=2(10-2x)x+2(8-2x)x,
即y=-8x2+36x.(0<x<4)
改写为y=-8(x-
9 |
4 |
81 |
2 |
∴当x=2.25时,y最大=40.5.
即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询