已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围

已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.... 已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围. 展开
 我来答
木兮04902
2015-01-20 · TA获得超过245个赞
知道答主
回答量:180
采纳率:0%
帮助的人:150万
展开全部
(Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx.
令f'(x)>0,解得x>
1
e
;令f'(x)<0,解得0<x<
1
e

从而f(x)在(0,
1
e
)
单调递减,在(
1
e
,+∞)
单调递增.
所以,当x=
1
e
时,f(x)取得最小值?
1
e

(Ⅱ)依题意,得f(x)≥ax-1在[1,+∞)上恒成立,
即不等式a≤lnx+
1
x
对于x∈[1,+∞)恒成立.
g(x)=lnx+
1
x

g′(x)=
1
x
?
1
x2
1
x
(1?
1
x
)

当x>1时,
因为g′(x)=
1
x
(1?
1
x
)>0

故g(x)是(1,+∞)上的增函数,
所以g(x)的最小值是g(1)=1,
从而a的取值范围是(-∞,1].
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式