(2014?闵行区三模)已知:如图,在直角坐标平面xOy中,O为原点,点A、C分别在x轴、y轴的正半轴上,四边
(2014?闵行区三模)已知:如图,在直角坐标平面xOy中,O为原点,点A、C分别在x轴、y轴的正半轴上,四边形OABC是边长为4的正方形,点E为BC的中点,且二次函数y...
(2014?闵行区三模)已知:如图,在直角坐标平面xOy中,O为原点,点A、C分别在x轴、y轴的正半轴上,四边形OABC是边长为4的正方形,点E为BC的中点,且二次函数y=-x2+bx+c经过B、E两点.将正方形OABC翻折,使顶点C落在二次函数图象的对称轴MN上的点G处,折痕EF交y轴于点F.(1)求二次函数y=-x2+bx+c的解析式;(2)求点G的坐标;(3)设点P为直线EF上的点,是否存在这样的点P,使得以P、F、G为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;如果不存在,请说明理由.
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询