在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=10.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若二面
在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=10.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若二面角A-PC-D的大小为60°,求AP...
在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=10.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若二面角A-PC-D的大小为60°,求AP的值.
展开
1个回答
展开全部
(Ⅰ)证明:设O为AC与BD的交点,作DE⊥BC于点E.
由四边形ABCD是等腰梯形得CE=
=1,DE=
=3,
所以BE=DE,从而得∠DBC=∠BCA=45°,
所以∠BOC=90°,即AC⊥BD.
由PA⊥平面ABCD得PA⊥BD,
因为AC∩PA=A,
所以BD⊥平面PAC. …(7分)
(Ⅱ)解:方法一:作OH⊥PC于点H,连接DH.
由(Ⅰ)知DO⊥平面PAC,故DO⊥PC.
所以PC⊥平面DOH,从而得PC⊥OH,PC⊥DH.
故∠DHO是二面角A-PC-D的平面角,
所以∠DHO=60°.
在Rt△DOH中,由DO=
,得OH=
.
在Rt△PAC中,
=
.
设PA=x,可得
=
.
解得x=
由四边形ABCD是等腰梯形得CE=
BC?AD |
2 |
DC2?CE2 |
所以BE=DE,从而得∠DBC=∠BCA=45°,
所以∠BOC=90°,即AC⊥BD.
由PA⊥平面ABCD得PA⊥BD,
因为AC∩PA=A,
所以BD⊥平面PAC. …(7分)
(Ⅱ)解:方法一:作OH⊥PC于点H,连接DH.
由(Ⅰ)知DO⊥平面PAC,故DO⊥PC.
所以PC⊥平面DOH,从而得PC⊥OH,PC⊥DH.
故∠DHO是二面角A-PC-D的平面角,
所以∠DHO=60°.
在Rt△DOH中,由DO=
2 |
| ||
3 |
在Rt△PAC中,
PA |
PC |
OH |
OC |
设PA=x,可得
x | ||
|
| ||
6 |
解得x=
3
|