已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若关于x的方程f(x
已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围....
已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.
展开
展开全部
(1)当x=2时,f(2)=7
故切点坐标为(2,7)
又∵f′(x)=6x2-6x.
∴f′(2)=12
即切线的斜率k=12
故曲线y=f(x)在点(2,f(2))处的切线方程为y-7=12(x-2)
即12x-y-17=0
(2)令f′(x)=6x2-6x=0,解得x=0或x=1
当x<0,或x>1时,f′(x)>0,此时函数为增函数,
当0<x<1时,f′(x)<0,此时函数为减函数,
故当x=0时,函数f(x)取极大值3,
当x=1时,函数f(x)取极小值2,
若关于x的方程f(x)+m=0有三个不同的实根,则2<-m<3,即-3<m<-2
故实数m的取值范围为(-3,-2)
故切点坐标为(2,7)
又∵f′(x)=6x2-6x.
∴f′(2)=12
即切线的斜率k=12
故曲线y=f(x)在点(2,f(2))处的切线方程为y-7=12(x-2)
即12x-y-17=0
(2)令f′(x)=6x2-6x=0,解得x=0或x=1
当x<0,或x>1时,f′(x)>0,此时函数为增函数,
当0<x<1时,f′(x)<0,此时函数为减函数,
故当x=0时,函数f(x)取极大值3,
当x=1时,函数f(x)取极小值2,
若关于x的方程f(x)+m=0有三个不同的实根,则2<-m<3,即-3<m<-2
故实数m的取值范围为(-3,-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询