求不定积分∫ex2xdx
=(1/2)xe^2x-(1/4)e^2x+C
∫xe^2xdx
=1/2∫xe^2xd2x
=1/2∫xde^2x
=(1/2)xe^2x-1/2∫e^2xdx
=(1/2)xe^2x-1/4∫e^2xd2x
=(1/2)xe^2x-(1/4)e^2x+C
证明
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
∫xe^2xdx
=1/2∫xe^2xd2x
=1/2∫xde^2x
=(1/2)xe^2x-1/2∫e^2xdx
=(1/2)xe^2x-1/4∫e^2xd2x
=(1/2)xe^2x-(1/4)e^2x+C
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,仅仅是数学上有一个计算关系
。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
参考资料来源:百度百科-不定积分
广告 您可能关注的内容 |