AB是⊙O的直径,C为圆上一点,AB=2,AC=1,P为⊙O所在平面外一点,且PA⊥⊙O,PB与平面所成角为45°(1)

AB是⊙O的直径,C为圆上一点,AB=2,AC=1,P为⊙O所在平面外一点,且PA⊥⊙O,PB与平面所成角为45°(1)证明:BC⊥平面PAC;(2)求点A到平面PBC的... AB是⊙O的直径,C为圆上一点,AB=2,AC=1,P为⊙O所在平面外一点,且PA⊥⊙O,PB与平面所成角为45°(1)证明:BC⊥平面PAC;(2)求点A到平面PBC的距离. 展开
 我来答
寒冰24fz
推荐于2019-03-25 · TA获得超过128个赞
知道答主
回答量:115
采纳率:50%
帮助的人:124万
展开全部
(1)证明:∵PA⊥平面ABC,∴PA⊥BC,
∵AB是圆O的直径,C是圆上一点,∴BC⊥AC,
又∵PA∩AC=A,
∴BC⊥平面PAC.
(2)解:如图,过点A作AD⊥PC,于点D,
∵BC⊥平面PAC,AD?平面PAC,
∴BC⊥AD,∴AD⊥平面PBC,
∴AD即为点A到平面PBC的距离,
依题意知∠PBA是PB与平面ABC所成的角,∴∠PBA=45°,
∴PA=AB=2,AC=1,解得PC=
5

∵AD?PC=PA?AC,
∴AD=
2×1
5
2
5
5

∴点A到平面PBC的距离为
2
5
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式