如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证

如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF... 如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由. 展开
 我来答
我爱李泽宏852
推荐于2016-06-10 · TA获得超过472个赞
知道答主
回答量:135
采纳率:75%
帮助的人:60.7万
展开全部
(1)证明:∵CD垂直平分线AB,
∴AC=CB.
∴△ABC是等腰三角形,
∵CD⊥AB,
∴∠ACD=∠BCD.
∵DE⊥AC,DF⊥BC,
∴∠DEC=∠DFC=90°
∴∠EDC=∠FDC,
在△DEC与△DFC中,
∠ACD=∠BCD
CD=CD
∠EDC=∠FDC

∴△DEC≌△DFC(ASA),
∴CE=CF.

(2)解:当CD=
1
2
AB时,四边形CEDF为正方形.理由如下:
∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵CD=
1
2
AB,
∴CD=BD=AD,
∴∠B=∠DCB=∠ACD=45°,
∴∠ACB=90°,
∴四边形ECFD是矩形,
∵CE=CF,
∴四边形ECFD是正方形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式