如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会
如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说明理由.(2)试说明AE∥BC的理由.(...
如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说明理由.(2)试说明AE∥BC的理由.(3)如图(2),将(1)中的点D运动到边BA的延长线上,所作仍为等边三角形.请问是否仍有AE∥BC?请说明理由.(4)将(1)中的点D运动到边AB的延长线上,仍向上作等边△EDC,连接AE.请按要求画出图形,请问是否仍有AE∥BC?请说明理由.
展开
1个回答
展开全部
证明:(1)∵△ABC与△EDC是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC.
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE.
∴在△DBC和△EAC中,
∴△DBC≌△EAC(SAS).
(2)∵△DBC≌△EAC,
∴∠DBC=∠EAC=60°,
又∵∠ACB=60°,
∴∠EAC=∠ACB(等量代换),
∴AE∥BC(内错角相等,两直线平行);
(3)结论:AE∥BC
理由:∵△ABC、△EDC为等边三角形
∴BC=AC,DC=CE,∠BCA=∠DCE=60°
∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE
在△DBC和△EAC中,
,
∴△DBC≌△EAC(SAS),
∴∠EAC=∠B=60°
又∵∠ACB=60°
∴∠EAC=∠ACB
∴AE∥BC;
(4)成立;
∵同(3)易证△ACE≌△BCD,
∴∠CAE=∠CBD(全等三角形的对应角相等),
∵∠CBD+∠ABC=180°,∠ABC=60°,
∴∠CAE=∠CBD=120°,
∴∠EAB=∠EAC-CBA=60°,
∴∠EAB=∠ABC=60°,
∴AE∥BC(内错角相等,两直线平行).
∴∠ACB=∠DCE=60°,AC=BC,DC=EC.
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE.
∴在△DBC和△EAC中,
|
∴△DBC≌△EAC(SAS).
(2)∵△DBC≌△EAC,
∴∠DBC=∠EAC=60°,
又∵∠ACB=60°,
∴∠EAC=∠ACB(等量代换),
∴AE∥BC(内错角相等,两直线平行);
(3)结论:AE∥BC
理由:∵△ABC、△EDC为等边三角形
∴BC=AC,DC=CE,∠BCA=∠DCE=60°
∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE
在△DBC和△EAC中,
|
∴△DBC≌△EAC(SAS),
∴∠EAC=∠B=60°
又∵∠ACB=60°
∴∠EAC=∠ACB
∴AE∥BC;
(4)成立;
∵同(3)易证△ACE≌△BCD,
∴∠CAE=∠CBD(全等三角形的对应角相等),
∵∠CBD+∠ABC=180°,∠ABC=60°,
∴∠CAE=∠CBD=120°,
∴∠EAB=∠EAC-CBA=60°,
∴∠EAB=∠ABC=60°,
∴AE∥BC(内错角相等,两直线平行).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询