3个回答
展开全部
解答:证明(法一):∵log(a?1)a?loga(a+1)=
?loga(a+1)
=
.
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)?loga(a+1)≤[
]2
=
<
=1
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
=
=
由法1可知:loga(a-1)?loga(a+1)≤[
]2
=
<
=1
∴
>1.
故命题得证
1 |
loga(a?1) |
=
1?(loga(a?1))?(loga(a+1)) |
loga(a?1) |
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)?loga(a+1)≤[
loga(a?1)+loga(a+1) |
2 |
=
[loga(a2?1)]2 |
4 |
[logaa2]2 |
4 |
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
log(a?1)a |
loga(a+1) |
| ||
loga(a?1) |
1 |
(loga(a?1))?(loga(a+1)) |
由法1可知:loga(a-1)?loga(a+1)≤[
loga(a?1)+loga(a+1) |
2 |
=
[loga(a2?1)]2 |
4 |
[logaa2]2 |
4 |
∴
1 |
loga(a?1)?loga(a+1) |
故命题得证
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先用换底公式:
log(a-1)a=lga/lg(a-1)
loga(a+1)=lg(a+1)/lga
log(a-1)a/loga(a+1)=(lga)^2/lg(a-1)*lg(a+1)[1]
由均值不等式,
lg(a-1)*lg(a+1)<={[lg(a-1)+lg(a+1)]/2}^2=[lg(a^2-1)]^2/4
<[lg(a^2)]^2/4=(lga)^2
lg(a-1)*lg(a+1)<(lga)^2[2]
由1,2式
log(a-1)a/loga(a+1)>1
log(a-1)a大于loga(a+1)
log(a-1)a=lga/lg(a-1)
loga(a+1)=lg(a+1)/lga
log(a-1)a/loga(a+1)=(lga)^2/lg(a-1)*lg(a+1)[1]
由均值不等式,
lg(a-1)*lg(a+1)<={[lg(a-1)+lg(a+1)]/2}^2=[lg(a^2-1)]^2/4
<[lg(a^2)]^2/4=(lga)^2
lg(a-1)*lg(a+1)<(lga)^2[2]
由1,2式
log(a-1)a/loga(a+1)>1
log(a-1)a大于loga(a+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询