(2012?成华区一模)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交AB于点G,设MN交∠B

(2012?成华区一模)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交AB于点G,设MN交∠BCA的平分线于点E,交∠ACD的角平分线于点F.(... (2012?成华区一模)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交AB于点G,设MN交∠BCA的平分线于点E,交∠ACD的角平分线于点F.(1)求证:OE=OF;(2)若△ABC是以AB为斜边的直角三角形,猜想并证明当点O运动到何处时四边形AECF为正方形?此时,如果AE=2,AB=4,求sin∠BAE的值. 展开
 我来答
中野梓酱噦
推荐于2016-01-19 · TA获得超过133个赞
知道答主
回答量:123
采纳率:0%
帮助的人:109万
展开全部
(1)证明:∵MN∥BC,
∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴帆喊敬∠ECB=∠OCE,∠OCF=∠FCD,渗陵
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;

(2)解:当点O运动到AC中点时,四边形AECF为正方形.理由如下:
由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
又∵∠ACB=90°,MN∥BC,
∴∠AOE=∠ACB=90°,
∴AC⊥EF,
∴矩形AECF是正方形.
∴AE=CE=
2
,∠AEC=90°,
∴AC=2,OA=OE=1.
在Rt△ABC中,∵∠ACB=90°,AB=4,AC=2,
∴sin∠B=
AC
AB
=
2
4
=
1
2

∴∠B=30°,
∴∠AGO=∠B=30°,OG=
3
OA=
3

过E作EH⊥AB于H,设EH=x,则GE=2x,
∵GE+OE=OG,
∴2x+1=
3
,态慎
∴x=
3
?1
2

在Rt△AHE中,sin∠HAE=
HE
AE
=
3
?1
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消